Physical Theory for Particle Swarm Optimization
نویسندگان
چکیده
We propose an inter-disciplinary approach to particle swarm optimization (PSO) by establishing a molecular dynamics (MD) formulation of the algorithm, leading to a physical theory for the swarm environment. The physical theory provides new insights on the operational mechanism of the PSO method. In particular, a thermodynamic analysis, which is based on the MD formulation, is introduced to provide deeper understanding of the convergence behavior of the basic classical PSO algorithm. The thermodynamic theory is used to propose a new acceleration technique for the PSO. This technique is applied to the problem of synthesis of linear array antennas and very good improvement in the convergence performance is observed. A macroscopic study of the PSO is conducted by formulating a diffusion model for the swarm environment. The Einstein’s diffusion equation is solved for the corresponding probability density function (pdf) of the particles trajectory. The diffusion model for the classical PSO is used, in conjunction with Schrödinger’s equation for the quantum PSO, to propose a generalized version of the PSO algorithm based on the theory of Markov chains. This unifies the two versions of the PSO, classical and quantum, by eliminating the velocity and introducing position-only update equations based on the probability law of the method.
منابع مشابه
Using a combination of genetic algorithm and particle swarm optimization algorithm for GEMTIP modeling of spectral-induced polarization data
The generalized effective-medium theory of induced polarization (GEMTIP) is a newly developed relaxation model that incorporates the petro-physical and structural characteristics of polarizable rocks in the grain/porous scale to model their complex resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model parameter from spectral-induced polarization data is a challenging is...
متن کاملA Modified Discreet Particle Swarm Optimization for a Multi-level Emergency Supplies Distribution Network
Currently, the research of emergency supplies distribution and decision models mostly focus on deterministic models and exact algorithm. A few of studies have been done on the multi-level distribution network and matheuristic algorithm. In this paper, random processes theory is adopted to establish emergency supplies distribution and decision model for multi-level network. By analyzing the char...
متن کاملA particle swarm optimization method for periodic vehicle routing problem with pickup and delivery in transportation
In this article, multiple-product PVRP with pickup and delivery that is used widely in goods distribution or other service companies, especially by railways, was introduced. A mathematical formulation was provided for this problem. Each product had a set of vehicles which could carry the product and pickup and delivery could simultaneously occur. To solve the problem, two meta-heuristic methods...
متن کاملSuppressing Vibration In A Plate Using Particle Swarm Optimization
In this paper a mesh-free model of the functionally graded material (FGM) plate is presented. The piezoelectric material as a sensor and actuator has been distributed on the top and bottom of the plate, respectively. The formulation of the problem is based on the classical laminated plate theory (CLPT) and the principle of virtual displacements. Moreover, the Particle Swarm optimization (PSO) ...
متن کاملDiversified Particle Swarm Optimization for Hybrid Flowshop Scheduling
The aim of this paper is to propose a new particle swarm optimization algorithm to solve a hybrid flowshop scheduling with sequence-dependent setup times problem, which is of great importance in the industrial context. This algorithm is called diversified particle swarm optimization algorithm which is a generalization of particle swarm optimization algorithm and inspired by an anarchic society ...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کامل